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Fig. 1. Given multi-view one-light-at-a-time (OLAT) images illuminated by a moving point light, our OLAT Gaussians technique builds relightable representa-
tions for diverse objects. Besides achieving state-of-the-art rendering quality with more details in texture-rich areas than prior arts DNL [Gao et al. 2020] and
NRHints [Zeng et al. 2023], our technique also supports real-time modification of views and lights.

One-light-at-a-time (OLAT) images sample a broader range of object appear-
ance changes than images captured under constant lighting and are superior
as input to object relighting. Although existing methods have produced
reasonable relighting quality using OLAT images, they utilize surface-like
representations, limiting their capacity to model volumetric objects, such as
furs. Besides, their rendering process is time-consuming and still far from
being used in real-time applications. To address these issues, we propose
OLAT Gaussians to build relightable representations of objects from multi-
view OLAT images. We build our pipeline on 3D Gaussian Splatting (3DGS),
which achieves real-time high-quality rendering. To augment 3DGS with
relighting capability, we assign each Gaussian a learnable feature vector,
serving as an index to query the objects’ appearance field. Specifically, we
decompose the appearance field into an incident illumination function and
a scattering function. The former accounts for light transmittance and fore-
shortening effects, while the latter represents the object’s material properties
to scatter light. Rather than using an off-the-shelf physically-based para-
metric rendering formulation, we model both functions using multi-layer
perceptrons (MLPs). This makes our method suitable for various objects,
e.g., opaque surfaces, semi-transparent volumes, furs, fabrics, etc. Given a
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camera view and a point light position, we compute each Gaussian’s color
as the product of the light intensity, the incident illumination value, and
the scattering value, and then render the target image through the 3DGS
rasterizer. To enhance rendering quality, we further utilize a proxy mesh
to provide OLAT Gaussians with normals to improve highlights and visi-
bility cues to improve shadows. Extensive experiments demonstrate that
our method produces state-of-the-art rendering quality with significantly
more details in texture-rich areas than previous methods. Our method also
achieves real-time rendering, allowing users to interactively modify camera
views and point light positions to get immediate rendering results, which
are not available from the offline rendering of previous methods.
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1 Introduction
Object relighting is a long-standing goal in computer graphics and
has wide applications, such as creating digital doubles of cultural
relics and showcasing commodities online. Since the appearances
of real-world objects result from the complex interactions of their
geometry, material properties, and environmental lighting, it is chal-
lenging to disentangle only the objects’ attributes, making relighting
a highly ill-posed problem.
One branch of existing relighting methods reconstructs object

appearances from multi-view images captured under constant en-
vironmental lighting. It allows casual capturing processes (such as
recording a video surrounding the objects simply using a cellphone
camera) but only captures a limited range of appearance changes.
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Another branch utilizes well-designed light patterns to sample a
wider range of appearance changes and achieves more accurate
reconstruction than methods with constant lighting. Following the
latter style, we choose Deferred Neural Lighting [Gao et al. 2020]’s
OLAT capturing setup, which consists of a handheld camera to cap-
ture multi-view images and a single moving point light source to
light the objects from different positions. This lightweight setup
provides rich lighting information while maintaining a convenient
capturing process without heavy equipment.
Existing methods have produced plausible relighting results by

representing objects using meshes [Chen et al. 2021; Hasselgren et al.
2022; Munkberg et al. 2022], neural implicit functions [Boss et al.
2021a,b; Liang et al. 2023a; Liu et al. 2023; Zhang et al. 2021b,c], and
3D Gaussians [Jiang et al. 2023; Liang et al. 2023b]. However, most of
them rely on specific shading functions formulated by a sparse set of
parameters, such as the prevailingmicrofacetmaterial model [Burley
and Studios 2012; Walter et al. 2007], limiting their usage mainly
in objects of solid opaque surfaces. Recently, NRHints [Zeng et al.
2023] leverages an MLP network to model the rendering process
and performs well on various objects. Nevertheless, since NRHints
utilizes NeuS [Wang et al. 2021]’s SDF surface representation, it
produces blurry artifacts for extremely thin structures (such as furs
and fabrics). Moreover, the volume rendering of vanilla NeuS takes
minutes to render a single frame, which is still far from efficient
usage.
To this end, we introduce OLAT Gaussians to build relightable

representations of objects and render relighted images with high-
fidelity details and real-time performance, as shown in Fig. 1. With
captured OLAT images, we first build a proxy mesh using Instant-
NeuS+, which we implement on Instant-NSR-pl [Guo 2022] to re-
construct object geometry from OLAT images. The proxy mesh pro-
vides OLAT Gaussians with vertex samples for shape initialization,
depth-to-light for shadow mapping, and reference normals. After
initialization, we assign each Gaussian a learnable feature vector to
query the objects’ appearance field, which is decomposed into inci-
dent illumination and scattering functions. We model both functions
using trainable MLPs rather than a fixed rendering formulation to
represent diverse materials. To aid OLAT Gaussians with geometry
information, we condition the incident illumination function with
the light visibility from shadow mapping, accounting for reasonable
occlusion. Furthermore, we assign each Gaussian a learnable normal
(supervised by mesh normals) to condition the scattering function to
improve specular highlights. In addition, we explicitly attenuate the
light intensity by a physically correct inverse square rule. Finally, at
a given camera view with a point light position, we compute each
Gaussian’s color as the product of the light intensity, the incident
illumination value, and the scattering value, and then use the 3DGS
rasterizer to produce the relighted image.

Experiments show that our decomposed MLP formulation is more
versatile in representing various materials than the microfacet mate-
rial model and producesmore accurate results than feeding all inputs
to a single network without decomposition. As a result, our method
achieves state-of-the-art rendering quality and efficiency on diverse
real-world objects, including opaque surfaces, semi-transparent vol-
umes, furs, and fabrics.
To sum up, our main contributions are:

• We introduce OLAT Gaussians, a novel relightable represen-
tation that combines 3DGS with a well-designed decomposed
MLP formulation and is applicable for diverse objects.

• We leverage a proxy mesh to assist OLAT Gaussians with
normals to improve highlights and visibility cues to improve
shadows.

• Our method achieves state-of-the-art rendering quality with
significantly more details in texture-rich areas than previous
methods, and real-time rendering performance.

2 Related Works
With profound advances in deep learning techniques, several differ-
entiable neural architectures have been proposed to represent object
appearance. We summarize representative works in image-based
relighting and relightable 3D representations, including meshes,
neural implicit functions, and 3D Gaussians. Please refer to com-
prehensive surveys [Dong 2019; Einabadi et al. 2021; Tewari et al.
2022] for more research in relighting object appearance.

Image-based Relighting. Deep learning has been introduced to
generate scene appearances under different lighting conditions [Be-
mana et al. 2020; Debevec et al. 2000; Ren et al. 2015; Xu et al. 2018]
from a collection of input images. Philip et al. [2019] first build
a proxy mesh using multi-view stereo (MVS) and then use it to
generate shadow maps and illumination buffers, which are fed to
a convolutional neural network (CNN) to yield relighted images.
Their model is trained on synthetic data but generates reasonable
results on real-world data. Deferred Neural Lighting (DNL) [Gao
et al. 2020] also utilizes a CNN as a renderer, which takes as input
the projected textures and radiance cues rendered from a rough
mesh with neural textures on each vertex and then produces render-
ing results. DNL’s model typically requires 10,000 images to train.
Neural Light Transport (NLT) [Zhang et al. 2021a] computes diffuse
components using the Lambertian model and predicts non-diffuse
components using a CNN conditioned by the non-diffuse residuals
from nearby views. NLT’s model requires 8,000 images captured by
a light stage to train. Philip et al. [2021] extract source irradiance
and mirror reflection from captured images as illumination cues
and then feed both source and target illumination cues (specified by
users) to a pretrained neural renderer to produce relighted images.
These image-based relighting methods define appearance at-

tributes on meshes, which represent surface-like objects well but
fall short of describing volumetric objects, such as furs and fabrics.
Moreover, they rely on image-space renderers (mainly CNNs) and
thus cannot optimize camera calibration errors common for real-
world multi-view images. Instead of relying on meshes, we employ
the 3DGS representation, which is more versatile in representing
diverse objects and is able to jointly optimize camera poses through
its differentiable rasterizer.

Mesh Representation. With rapid development in differentiable
3D renderers, the mesh-based representation is naturally adopted
for inverse rendering, which optimizes objects’ shape and material
properties by backpropagating the losses between rendered and real
images. DIB-R++ [Chen et al. 2021] starts with a given triangular
mesh, then employs a rasterization-based renderer to obtainmaterial
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maps, and finally computes shading results by sampling lighting in
a deferred stage. Munkberg et al. [2022] utilize differentiable march-
ing tetrahedrons [Shen et al. 2021] as the geometry representation
and jointly optimize a triangular mesh, materials, and environmen-
tal lighting approximated by split sum. To improve material and
light separation, Hasselgren et al. [2022] augment [Munkberg et al.
2022] by leveraging a Monte Carlo (MC) ray-tracing renderer and a
neural denoiser to compensate for noises caused by MC sampling.
Luan et al. [2021] also use an MC renderer and extend its usage to
images illuminated by a light co-located with the camera view. Cai
et al. [2022] leverage differentiable iso-surface extraction to convert
implicit geometries into explicit ones for rendering to reproduce
various light transport effects. Although reconstructed meshes are
convenient to use directly in graphics rendering engines, they are
limited to representing only solid opaque surfaces, as discussed
previously. While using 3DGS to represent various objects, we also
take advantage of mesh geometry to provide normals and visibility
cues, thus improving our rendering quality further.

Neural Implicit Representation. Neural Radiance Fields (NeRF)
[Mildenhall et al. 2021] has gained great success in novel view syn-
thesis. It represents scenes as implicit radiance fields modeled by
MLPs and employs volume rendering with two-pass sampling to
generate realistic images at novel views. Since NeRF does not rely on
explicit geometries, its implicit representation demonstrates excep-
tional versatility for representing a wide variety of scenes. Extensive
research [Boss et al. 2021a, 2022, 2021b; Kuang et al. 2022; Li et al.
2022; Martin-Brualla et al. 2021; Rudnev et al. 2022; Srinivasan et al.
2021; Sun et al. 2021; Verbin et al. 2022; Xu et al. 2023; Yang et al. 2023,
2022; Yao et al. 2022; Zhang et al. 2021c; Zheng et al. 2021] extends
NeRF with relighting capability by decomposing the radiance fields
into material fields and environmental light. One common limitation
of NeRF-based relighting methods is the coarse geometry modeled
by an implicit density field, which lacks accurate occlusions and
thus struggles to produce correct shadows. To mitigate this issue,
LitNeRF [Sarkar et al. 2023] utilizes a proxy mesh generated by MVS
to provide visibility cues and produces more reasonable shadows
with sparse view images. Our 3DGS-based representation possesses
comparable versatility of reproducing object appearance to NeRF
and achieves better rendering efficiency by forwarding rendering,
which is free of sampling passes.

An alternative to NeRF’s density field is the neural signed dis-
tance function (SDF) [Park et al. 2019; Wang et al. 2021; Yariv et al.
2021]. NeuS [Wang et al. 2021] represents a surface as the zero-level
set of an SDF and produces fine-grained details via unbiased and
occlusion-aware sampling. [Fu et al. 2022; Li et al. 2023b; Wang
et al. 2024; Zhu et al. 2023] use additional regularizations and train-
ing strategies to further improve the SDF geometry. SDF-based
methods [Liang et al. 2023a; Liu et al. 2023; Lyu et al. 2022; Zhang
et al. 2022a, 2021b, 2022b] regularize objects’ shapes well and show
promising relighting results. NRHints [Zeng et al. 2023] applies
an SDF representation to OLAT images captured under [Gao et al.
2020]’s setup and produces accurate highlights and shadows with
additional radiance cues from the underlying geometry. However,
the SDF representation assumes a surface-like geometry, leading
to sub-optimal recovered details for extremely thin structures such

as furs and fabrics. In addition, the rendering efficiency of neural
implicit representations suffers from the time-consuming volume
rendering process. Although acceleration techniques [Fridovich-Keil
et al. 2022; Müller et al. 2022; Wang et al. 2023] for NeRF have been
proposed, they have not been widely utilized to build relightable
scenes with real-time rendering performance. On the other hand, our
method faithfully reproduces object details without the limitation
of surface geometry assumption and achieves real-time rendering.

3D Gaussian Representation. 3DGS [Kerbl et al. 2023] innovatively
employs an explicit 3D Gaussian representation and implements a
highly efficient rasterizer to achieve real-time high-quality render-
ing. GS-IR [Liang et al. 2023b] and R3DG [Gao et al. 2023] achieve
real-time relighting rendering from images captured under constant
lighting. GaussianShader [Jiang et al. 2023] enhances 3DGS’s re-
lighting quality on reflective surfaces. We introduce 3DGS to build
relightable representations from OLAT images to model accurate
appearance changes. Without assumptions on the underlying geom-
etry, our method recovers fine-grained details for various objects,
including semi-transparent volumes, furs, and fabrics. We also uti-
lize 3DGS’s efficient rasterizer to achieve real-time rendering.

3 Methodology
With captured multi-view OLAT images where a moving point light
is the only emissive light source, we aim to design a generic 3DGS
architecture for learning relightable representations of objects. We
do not make any assumption on objects’ geometry or material,
which would limit our model’s applicability. Therefore, we model
the appearance field of objects using MLPs rather than a sparse set
of material parameters.

On the other hand, 3DGS intrinsically does not guarantee accurate
geometry and thus falls short of producing accurate shadows and
highlights. To this end, we aid our model with geometry hints,
including occlusions and normals computed from a proxy mesh.
As a result, OLAT Gaussians reproduce high-fidelity details with
real-time rendering performance based on 3DGS’s highly efficient
forward rendering.

3.1 Preliminary
3D Gaussian Splatting. 3DGS represents a scene by point clouds,

with each point standing for the center (mean) 𝝁 of a 3D Gaussian
distribution:

𝐺 (𝒙 |𝝁, 𝚺) = 𝑒−
1
2 (𝒙−𝝁 )

𝑇
𝚺
−1 (𝒙−𝝁 ) , (1)

where 𝚺 ∈ 𝑅3𝑥3, an anisotropic covariance matrix, defines each
Gaussian’s shape. Each point is assigned a set of spherical harmon-
ics (SH) coefficients to represent view-dependent colors and an
opacity value 𝛼 for accumulated volume rendering. During render-
ing, each 3D Gaussian is projected to 2D image space and rasterized
to contribute to pixels that it covers. The final rendered image is the
accumulated results of all visible Gaussians’ contributions. We refer
to their paper [Kerbl et al. 2023] for technical details.

3.2 Proxy Mesh
As shown in Fig. 2, we start by reconstructing a proxy mesh from
OLAT images. Based on Instant-NSR-pl [Guo 2022], a fast NeuS
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Fig. 2. Pipeline overview. With captured multi-view OLAT images, we first reconstruct a proxy mesh using Instant-NeuS+, a fast NeuS implementation. Next,
vertices are sampled from the proxy mesh to initialize 3D Gaussians’ shapes. We also use the proxy mesh to render depth-to-light and reference normal maps.
The depth-to-light map is then used to provide light visibility through shadow mapping. Besides shape attributes, each Gaussian is assigned a learnable
feature vector and a normal to condition the appearance field, which is decomposed into incident illumination and scattering functions. The color of each
Gaussian is computed as the product of the light intensity, the incident illumination value, and the scattering value. Finally, we utilize 3DGS’s rasterizer to
render an image supervised by the ground truth. We also render a normal map supervised by the reference normal map to regularize the Gaussians’ normals.

implementation with multiresolution hash encoding [Müller et al.
2022] and efficient sampling [Li et al. 2023a], we implement Instant-
NeuS+ by additionally conditioning the color MLP with the incident
light direction𝒘 i, light distance 𝑑 , visibility hints 𝑣cue, and highlight
hints ℎcue (borrowed from [Zeng et al. 2023]) to help solve the
ambiguity between geometry and material:

𝒄 = 𝐹color (𝒇 sdf , 𝒏sdf ,𝒘o,𝒘 i, 𝑑, 𝑣cue, ℎcue), (2)

where 𝒘o is the view direction, 𝒏sdf is the normal, and 𝒇 sdf is the
feature vector produced by the SDF MLP of Instant-NSR-pl. The
proxy mesh is extracted from the SDF MLP by Marching Cubes
[Lorensen and Cline 1998].
Although other mesh reconstruction methods may also suffice,

we find Instant-NeuS+ generally yields meshes of reasonable quality
in efficient training time with no extra data or capturing process.
Thus, we use it for our pipeline.

With the proxy mesh, we randomly sample𝑀 vertices from it to
initialize the 3D Gaussians’ shapes. In addition to shape attributes
(position 𝒑, covariance 𝚺, and opacity 𝜶 ), we assign each Gaussian
a learnable feature vector 𝒇g (initialized randomly) and a learnable
normal 𝒏g (initialized as the mesh vertex normal), serving as input
to the appearance field.

3.3 Decomposed MLP Shading
Instead of modeling the appearance field as one union MLP that
accepts all inputs and decides the final appearance as in NRHints
[Zeng et al. 2023], we decompose the appearance field into incident
illumination and scattering MLPs. This decomposition helps these
two functions focus on representing their own parts and achieves
better brightness accuracy than one union MLP (see Fig. 7 and Tab.
4).

To render an image at a given camera view lit by a point light,
we composite each Gaussian’s observed color as the product of the
attenuated light intensity (a point light is denoted as its position 𝒙 l
and intensity 𝐿e), the received incident illumination value, and the
scattering value. In the following, we elaborate on each component.

Light Intensity. Following the physically correct inverse-square
law, the light intensity arriving at each Gaussian without occlusion
is computed as:

𝐿int =
𝐿e

∥𝒑 − 𝒙 l∥2
. (3)

Incident Illumination Function. This term stands for a Gauss-
ian’s received portion of unit light intensity, accounting for both
light transmittance and foreshortening effects. To make this term
geometry-aware, we decide each Gaussian’s visibility 𝑉 (𝒑,𝒘 i) ∈
{0, 1} (𝒘 i =

𝒙 l−𝒑
∥𝒙 l−𝒑 ∥ is the incident light direction) to the point light

by shadow mapping: we first render a depth map of the proxy mesh
at the point light view and then regard a Gaussian as visible if its dis-
tance to the point light is not greater than the observed depth (plus
a small bias to reduce shadow acne) in the depth map. In addition,
the foreshortening effect𝑚𝑎𝑥 (𝒏g ·𝒘 i, 0) is also taken into account.
The incident illumination function is formulated as follows:

𝒇 i = 𝐹incident (𝒘 i,𝒇g,𝑉 (𝒑,𝒘 i)𝑚𝑎𝑥 (𝒏g ·𝒘 i, 0)), (4)

The resulting incident illumination value 𝒇 i ∈ [0, 1] is a scalar
incorporating approximately non-tinted view-independent effects,
including light transmittance without explicit supervision.

Scattering Function. To describe material properties to scatter
light, the scattering function takes the incident light direction 𝒘 i,
the view direction 𝒘o, the Gaussian feature 𝒇g, and the Gaussian
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normal 𝒏g as input, and then predicts the scattering value 𝒇 s ∈ 𝑅3

𝒇 s = 𝐹scatter (𝒘 i,𝒘o,𝒇g, 𝒏g) . (5)

Note that the scattering function does not conform to a fixed reflec-
tion rule and is able to incorporate both direct and indirect lighting
to describe various materials.
With the above components, each Gaussian’s observed color 𝒄g

is computed as
𝒄g = 𝐿int · 𝒇 i · 𝒇 s . (6)

Finally, we project 3D Gaussians to 2D and use 3DGS’s rasterizer to
volume-render all visible Gaussians to produce an image 𝑰 g (with
sRGB gamma correction applied) and supervise it by the ground
truth image 𝑰 ∗.

3.4 Training
Normal Regularization. To ensure Gaussian normals match local

geometry, we use 3DGS’s rasterizer to render Gaussian normals to
a normal map 𝑵 g, which is then supervised by the reference mesh
normal map 𝑵 ref .

Loss. We jointly train each Gaussian’s attributes {𝒑, 𝚺, 𝛼,𝒇g, 𝒏g},
and the parameters of two global functions 𝐹incident and 𝐹scatter
using losses of images and normal maps. The loss function of images
is defined the same as 3DGS (L1 loss and a D-SSIM term), and the loss
function of normal maps is L1. The total loss function is formulated
as follows:

𝐿 = (1 − 𝜆1)𝐿1 (𝑰 g, 𝑰 ∗) + 𝜆1𝐿𝐷−𝑆𝑆𝐼𝑀 (𝑰 g, 𝑰 ∗) + 𝜆2𝐿1 (𝑵 g,𝑵 ref ), (7)
where we set 𝜆1=0.2 and 𝜆2=0.1 for all our experiments. We set 1e-3
as the learning rate of {𝒇g, 𝒏g}, 𝐹scatter, and 𝐹incident. The learning
rate and the schedule of {𝒑, 𝚺,𝜶 } are the same as those of the
3DGS project. More implementation details are provided in our
supplementary document.

4 Experiments
We run our method on 7 captured real-world OLAT scenes (4 from
DNL [Gao et al. 2020] and 3 from NRHints [Zeng et al. 2023]). These
scenes contain a wide variety of objects, including opaque surfaces,
semi-transparent volumes, furs, and fabrics. Reproducing appear-
ances from these scenes is challenging and requires the scene rep-
resentation to be versatile and robust. Note that although DNL
provides ∼10,000 training images, NRHints has achieved compara-
ble results with only 500∼1,000 images as input. We use the same
training sets as NRHints for an efficient training process. On the
other hand, for a fair comparison, we use the same test sets (50-300
views of each case) for all methods.

4.1 Comparisons
We compare our method with DNL [Gao et al. 2020] and NRHints
[Zeng et al. 2023], which produce state-of-the-art quality for OLAT
object relighting, among methods using image-space renderers and
methods using 3D differentiable representations, respectively. We
use NRHints’ pretrained models to generate its result images, while
DNL’s result images are provided. For cases from DNL, we crop out
the center 512x512 resolution areas from their original 1024x1024
images to focus on the subjects since most of the rest areas are pure

black. For cases from NRHints, we use the full 1024x1024 resolution.
(An exception: The provided DNL’s results on case Cat were trained
on downscaled ground truth. Since the original ground truth is
available, DNL’s results on Cat are upscaled for comparisons.)

DNL produces accurate results with ∼10,000 input images using
13 partition renderers, each trained on a subset of view directions.
As reported in Tab. 1, though slightly lower on PSNR, our method
achieves better SSIM and LPIPS than DNL using only 500∼1,000
input images. As shown in Fig. 3, while visually close, our results
possess more high-frequency details for furs (1st row), fabrics (3rd
row), and dotted highlights (2nd and 4th rows). Moreover, since
DNL utilizes image-space renderers that are intrinsically not differ-
entiable to camera poses, it embeds camera calibration errors in each
partition renderer. This results in “wobbling” artifacts during view
moving when the renderers try to reproduce an incorrect camera
pose. On the contrary, based on the 3D representation, our method
can jointly optimize camera poses for higher accuracy, which is
detailed in our supplementary document.

NRHints achieves comparable results to DNL while significantly
reducing the number of the required training images to 500∼1,000.
Based on the NeuS representation, NRHints’ results are reasonable
but tend to be over-smooth due to the assumption of a solid surface.
As shown in Fig. 3 and 4, our results demonstrate more faithful
details in texture-rich areas than those of NRHints. As reported
in Tab. 1 and 2, our method significantly improves LPIPS and also
achieves better PSNR and SSIM than NRHints.

Besides better rendering quality, as reported in Tab. 3, our method
trains a relightable model in around 1 hour, which is an order of
magnitude less than DNL and NRHints. Furthermore, our method
achieves real-time rendering with the highly efficient 3DGS raster-
izer, while previous methods only support offline rendering.

4.2 Ablation Studies
Normals. Due to the discrete nature of 3DGS, it inherently cannot

derive accurate normals that participate in the interaction between
object materials and environmental lights, especially for surface-
like objects. As shown in Fig. 5 and Tab. 4, our model produces
inferior specular highlights without the additional normal of each
Gaussian, proving that normals assist the scattering MLP in learning
physically correct reflection.

Visibility. Shadows are caused by self-occlusion determined by
whether the point light is visible to Gaussians. As shown in Fig. 5
and Tab. 4, our model fails to reproduce correct shadows without
the visibility from shadow mapping, indicating that the incident
illumination MLP successfully leverages the visibility to produce
reasonable occluded shadows.

Shading Formulations. We validate our design choice of the color
shading formulation by comparing it with two substituting solu-
tions:

(1) Parametric PBR Shading. Similar to existing 3DGS-based re-
lighting frameworks [Jiang et al. 2023; Liang et al. 2023b]
for constant lighting, this formulation further decomposes
the scattering function into per-Gaussian material attributes
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Table 1. Quantitative comparisons on the 4 cases from DNL. Best and second-best metrics are highlighted. Our method achieves comparable PSNR with
DNL and the best SSIM and LPIPS for all cases.

Cat Fish Cluttered Pixiu Average
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

DNL [Gao et al. 2020] 31.84 0.901 0.164 32.48 0.922 0.098 34.19 0.959 0.069 34.90 0.951 0.075 33.35 0.933 0.102
NRHints [Zeng et al. 2023] 31.21 0.900 0.152 31.01 0.909 0.112 33.76 0.959 0.072 33.68 0.948 0.079 32.42 0.929 0.104

Ours 31.94 0.935 0.099 31.92 0.933 0.072 34.59 0.971 0.046 34.18 0.953 0.067 33.15 0.948 0.071

Table 2. Quantitative comparisons on the 3 cases from NRHints. Better metrics are in boldface. Our method constantly outperforms NRHints on all metrics.

Cat on Decor Cup and Fabric Pikachu Average
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NRHints [Zeng et al. 2023] 36.061 0.976 0.070 37.555 0.981 0.055 34.464 0.969 0.066 36.023 0.975 0.064
Ours 36.537 0.981 0.054 38.646 0.986 0.043 34.963 0.973 0.061 36.715 0.980 0.053
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Ground Truth DNL NRHints Ours

Fig. 3. Qualitative comparisons with DNL [Gao et al. 2020] and NRHints [Zeng et al. 2023], tested on the 4 real captured scenes from DNL. Our method
produces more faithful details than DNL and NRHints, especially in texture-rich areas such as furs, fabrics, and dotted highlights.
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Fig. 4. Qualitative comparisons with NRHints [Zeng et al. 2023], tested on the 3 real captured scenes from NRHints. Our results possess more high-frequency
details, especially for fine-grained textures and thin structures.

Table 3. Required resources and performance of the compared methods.
Our method achieves real-time rendering with an order of magnitude fewer
input images than DNL and an order of magnitude less training time than
NRHints.

Input Images Training (GPUs) Inference
DNL [Gao et al. 2020] ∼10,000 ∼20h (13) 1∼2s

NRHints [Zeng et al. 2023] 500∼1,000 ∼20h (4) ∼1min
Ours 500∼1,000 ∼1h (1) ∼30ms

Table 4. Quantitative results of the ablation study. Metrics are averaged
from all 7 scenes. Our method achieves better rendering quality with nor-
mals and visibility as geometry cues. Our well-designed decomposed MLP
shading demonstrates better performance than PBR shading and union
shading.

Ablation Variants PSNR ↑ SSIM ↑ LPIPS ↓
w/o normals 34.5751 0.9613 0.0635
w/o visibility 33.9564 0.9596 0.0647

w/o normals and visibility 33.5752 0.9585 0.0659
PBR Shading 24.9865 0.8998 0.1146
Union Shading 33.8797 0.9603 0.0645

Ours 34.6826 0.9617 0.0629

(albedo 𝒂, roughness 𝜌 , metalness 𝑚) and uses occlusion-
based light visibility. The PBR shading function [Walter et al.

2007] is defined as follows:

𝒄 =
(
(1 − 𝐹 ) (1 −𝑚) 𝒂𝜋 + 𝐷𝐹𝐺

4(𝒘o ·𝒏) (𝒘i ·𝒏)

)
(𝒘 i · 𝒏)𝑉 (𝒑,𝒘 i)𝐿int, (8)

where 𝐷 , 𝐹 , and 𝐺 are the normal distribution function, the
Fresnel equation, and the geometry function, respectively.
𝑉 (𝒑,𝒘 i) is our visibility from shadow mapping. 𝒏 is the nor-
mal, also supervised by mesh normals. 𝐿int is the light inten-
sity from Eq. 3.
As shown in Fig. 7, PBR shading produces plausible results
only for materials (mainly opaque solid surfaces) that can be
well described by the shading function in Eq. 8. It is beyond
Eq. 8’s capacity to model effects such as anisotropic reflection
(1st row), semi-transparency (2nd row, the yellow cup), and
specular interreflection (3rd row). Therefore, different shad-
ing functions are required to reproduce these diverse effects.
To this end, we leverage the versatility of neural networks
to describe various materials without handcrafting for each
scene to achieve high-fidelity results.

(2) Union Shading. Inspired by NRHints [Zeng et al. 2023], it
is straightforward to feed all inputs to a single color net-
work that predicts the final color without decomposition.
This network contains the same number of hidden layers
with a doubled number of nodes in each layer as our two
MLPs. However, as shown in Fig. 7 and Tab. 4, though vi-
sually similar, union shading results fall short of brightness
accuracy. On the contrary, our method produces more accu-
rate results benefiting from the decomposition of incident
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illumination and scattering, which do not interfere with each
other, as shown in Fig. 6.

5 Limitations and Discussion
Indirect Lighting. OLAT Gaussians are generic to produce certain

indirect lighting effects. However, without the explicit guidance of
multi-bounce reflection rays, our results of indirect lighting are less
than perfect (e.g., 2nd row in Fig. 3, self-reflection on the baseboard).
An additional indirect lighting field might improve our results fur-
ther.

Shadows. Although the visibility from shadow mapping helps our
method produce reasonable shadows, the shadow edges are not as
sharp as the ground truth (Fig. 5). Since the sharp shadow edges
change continuously with the moving point light, fuzzy artifacts
arise when the edges appear at regions covered by sparse Gaussians
that are insufficient to reproduce sharp edges. Densifying Gaussians
with a dedicated strategy might alleviate this issue.

6 Conclusion
This paper has presented OLAT Gaussians to reconstruct objects’
relightable appearance from OLAT images. With the well-designed
shading decomposition, our method produces high-quality results
on diverse materials, including opaque surfaces, semi-transparent
volumes, furs, and fabrics. With an order of magnitude less training
time than previous methods, our method reproduces more faithful
details. Our method also achieves real-time rendering, which may
support future interactive applications.
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Ground Truth OursOurs w/o normal Ground Truth OursOurs w/o visibility

Fig. 5. Ablation study of normals and visibility. Our method produces more accurate specular highlights with Gaussian normals and sharper shadow edges
with visibility.

Ground Truth Normal Incident Illumination ScatteringRendering

Fig. 6. Components of our rendering results. The normals match objects’ underlying geometry well. The incident illumination and scattering parts are well
disentangled.
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Ground Truth PBR Shading Union Shading Ours

Fig. 7. Ablation study of different shading formulations. Our decomposed MLP shading is more versatile than PBR shading to reproduce various lighting
effects, such as anisotropic highlights (1st row), semi-transparency (2nd row, the yellow cup), and specular interreflection (3rd row). Our shading achieves
more accurate brightness than union shading.
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