
Supplementary Material for
OLAT Gaussians for Generic Relightable Appearance Acquisition

This supplementary document provides implementation details of OLAT
Gaussians (Sec. 1), a comparison between learnable normals and reference
mesh normals (Sec. 2), additional ablation studies (Sec. 3, including camera
pose residuals, learnable feature 𝒇 g, and number of training views), and ad-
ditional limitations and discussion (Sec. 4, including environmental lighting
and material editing).

1 IMPLEMENTATION DETAILS
Architecture. We implement Instant-NeuS+ based on Instant-NSR-

pl [Guo 2022] and OLAT Gaussians based on the 3DGS project using
PyTorch [Paszke et al. 2019] to build MLPs. We initialize 3D Gaus-
sians for all scenes with 100k points sampled from corresponding
proxy meshes. The feature vector 𝒇g of each Gaussian has 64 nodes.
Both the incident illumination and scattering MLPs consist of 4 hid-
den layers with 128 nodes. We use the sigmoid function to activate
the incident illumination value and the exponential function to acti-
vate the scattering value. Since the datasets do not explicitly calibrate
the point light intensity, we empirically set 𝐿e = 0.8 ·𝑚𝑎𝑥 ({∥𝒙 l∥2})
for all scenes.

Camera Pose Residuals. Camera calibration for multi-view real-
world images unavoidably incorporates errors, which cause incon-
sistency among views. To mitigate this issue, we assign each camera
view a trainable camera pose residual, containing a rotation quater-
nion 𝚫𝒒 and a translation vector 𝚫𝒕 , which are jointly optimized to
refine camera poses. Assuming minor camera calibration errors, we
set 1e-5 as the learning rate of {𝚫𝒒,𝚫𝒕 }.

Training and Rendering. We train Instant-NeuS+ for 30k iterations
to get each proxy mesh using the AdamW optimizer [Kingma and
Ba 2014] with 𝛽1=0.9 and 𝛽2=0.99. We train OLAT Gaussians of
each scene for 30k iterations using the Adam optimizer [Kingma
and Ba 2014] with 𝛽1=0.9 and 𝛽2=0.999. We use the densification
strategy of Pixel-GS [Zhang et al. 2024] to refine areas covered by
large Gaussians. Our models are trained on a single NVIDIA 3090
GPU. Depending on the scene’s complexity, it typically takes around
30 minutes to train Instant-NeuS+ and 25 minutes to train OLAT
Gaussians. Tested on a PC with a single NVIDIA 2080ti GPU, a
trained model typically renders at around 30 FPS.

2 QUALITY OF LEARNABLE NORMALS
Besides contributing to better specular highlights, the learnable
normals of Gaussians are trained to closely match the reference
mesh normals by 32.7982 PSNR, 0.9769 SSIM, and 0.0388 LPIPS on
average. Fig. 3 shows qualitative comparisons, where the learnable
normals are visually close to the reference mesh normals.

3 ADDITIONAL ABLATION STUDIES
Camera Pose Residuals. OLAT Gaussians assign each camera view

a pose residual to be jointly optimized. As shown in Tab. 1 and Fig.
1, although visually similar, our method produces more errors at
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Table 1. Quantitative results of ablation studies.

Ablation Variants PSNR ↑ SSIM ↑ LPIPS ↓
w/o camera pose residuals 34.1611 0.9577 0.0646
w/o learnable features 27.4776 0.9179 0.1118

50 training views 28.6642 0.9102 0.0899
100 training views 30.6024 0.9321 0.0760
250 training views 33.0895 0.9530 0.0648
500 training views 34.3669 0.9606 0.0631

Ours 34.6826 0.9617 0.0629

Ground Truth OursOurs w/o camera pose residuals

Fig. 1. Ablation study of camera pose residuals. L1 error maps are visualized
in insets at the bottom-right corners.

Ground Truth Ours w/o features Ours

Fig. 2. Ablation study of learnable features. Without per-Gaussian learnable
features, the results of OLAT Gaussians show homogeneous appearances
lacking local high-frequency details.

contours (see the L1 error maps in insets) without the camera pose
residuals.

Learnable Features. The learnable features 𝒇g assigned to Gaus-
sians embed most material properties that cannot be conveyed by
other inputs to 𝐹incident and 𝐹scatter. As shown in Tab. 1 and Fig. 2,
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Fig. 3. Qualitative comparisons between the learned normals and reference mesh normals, which are visually close.

Ground Truth 50 views 100 views 250 views 500 views Ours

Fig. 4. Ablation study of using fewer training views. OLAT Gaussians produce reasonable results with 250 input views and benefit from more input views.

OLAT Gaussians without learnable features produce homogeneous
appearances that lack local high-frequency details.

Number of Training Views. Although OLAT Gaussians have re-
duced the required number of training views from 10,000 in DNL
to 500∼1,000, a broad sampling of both views and lights is still nec-
essary to model complex light effects. As shown in Tab. 1 and Fig.
4, 250 training views are sufficient for OLAT Gaussians to produce
plausible results, and fewer training views lead to noticeable arti-
facts. While the results of OLAT Gaussians are improved by more
training views, the magnitude of improvement decreases as the
number of training views increases.

4 ADDITIONAL LIMITATIONS AND DISCUSSION
Extension to Area and Environmental Light. Without additional

training, one plausible approach to this extension is to use an envi-
ronment map’s pixels as queries to get OLAT values, which are accu-
mulated as the Gaussians’ colors. Example results of this approach
are shown in Fig. 5, where OLAT Gaussians produce photorealis-
tic results under various environmental maps. However, since the
processing time increases as the number of pixel samples grows, con-
siderable further adaptation is still required to run OLAT Gaussians
with real-time performance for environmental light.

Material Editing. Although our shading formulation demonstrates
better relighting quality than parametric PBR shading, the learn-
able feature 𝒇g does not support semantically meaningful editing
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Environment Map Environment MapRelighted View 1 Relighted View 2 Relighted View 1 Relighted View 2

Fig. 5. Environmental relighting results. Environment maps and two corresponding relighted views are shown. OLAT Gaussians produce natural relighted
appearances under various environment maps that are unseen during training.

like common material parameters. Augmenting 𝒇g with semantic
meaning will promote our method to broader usage.
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